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To Professor Robert Tijdeman on the occasion of his 75th birthday

1. Introduction. The Riemann zeta function ζ(s) plays a crucial role
in mathematics. The Laurent series expansion of ζ(s) around s = 1 (see [3])
can be written as

ζ(s) =
1

s− 1
+ γ +

∞∑
k=1

(−1)k

k!
γk(s− 1)k,

where

γk := lim
N→∞

{ N∑
n=1

logk n

n
− logk+1N

k + 1

}
are called the Stieltjes constants and γ is the well-known Euler–Mascheroni
constant. Even though these constants are important ingredients of the the-
ory of the Riemann zeta function and appear in many contexts, it is unknown
whether they are rational or irrational although they are expected to be tran-
scendental. As a generalization of this question to arithmetic progressions,
Knopfmacher [10] defined

γk(a, q) := lim
x→∞

{ ∑
n≤x

n≡amod q

logk n

n
− logk+1 x

q(k + 1)

}

for natural numbers a and q. The case k = 0 was studied earlier (1975) by
D. H. Lehmer [12]. We refer to these constants as the generalized Stieltjes
constants.
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The motivation for studying these constants comes from our desire to un-
derstand special values of L-series. More precisely, when f is an arithmetical
function, with period q, the Dirichlet series

L(s, f) :=
∞∑
n=1

f(n)

ns

has been the focus of intense study (see for example the survey article by
Tijdeman [17] as well as [4], [8] and [15]). However, these papers studied
the special value L(1, f) whenever it is defined. Interestingly, this special
value can be studied using Baker’s theory of linear forms in logarithms. In
this paper, our focus will be on the derivative L′(1, f). This problem has
received scant attention. For example, there is the curious result of Murty
and Murty [14] which states that if there is some squarefree D > 0 and χD is
the quadratic character attached to Q(

√
−D) such that L′(1, χD) = 0, then

eγ is transcendental. An analogous question of non-vanishing seems to occur
in other contexts as well (see for example [16]). These are not unrelated to
the Euler–Kronecker constants studied in [9] and [13].

Many arithmetic properties and computational aspects of these constants
have been studied in [7] but the only known result about their transcendental
nature is a theorem due to M. Ram Murty and N. Saradha [15, Theorem 1],
who tackle the case k = 0. In the present paper, we concentrate on the
arithmetic nature of these constants when k = 1.

The nature of values of the gamma function at rational arguments and
relations among them have been the subject of research for a long time. In
light of this, a conjecture put forth by S. Gun, M. Ram Murty and P. Rath [8]
will be useful towards a partial solution to our question:

Conjecture 1. For any positive integer q > 2, let VΓ (q) be the Q-vector
space spanned by the real numbers

logΓ

(
a

q

)
, 1 ≤ a ≤ q, (a, q) = 1.

Then the dimension of VΓ (q) is φ(q).

This conjecture was inspired by a conjecture of Rohrlich (see [18]) re-
garding possible relations among special values of the Γ -function. We note
that Conjecture 1 is equivalent to the numbers {logΓ (a/q) | 1 ≤ a ≤ q,
(a, q) = 1} being Q-linearly independent for q > 2. This is a major unsolved
problem in number theory and is believed to be outside the scope of current
mathematical tools.

For a natural number q, a function f defined on the integers which is
periodic with period q is said to be odd if f(q − n) = −f(n) for all natural
numbers n, and even if f(q − n) = f(n) for all natural numbers n.
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As noted earlier, the L-series attached to f is defined as

L(s, f) :=

∞∑
n=1

f(n)

ns

for <(s) > 1. Using the theory of the Hurwitz zeta function, one can extend
L(s, f) to an entire function as long as

∑q
a=1 f(a) = 0.

Given a q-periodic function f , we define the Fourier transform of f as

(1) f̂(b) :=
1

q

q∑
a=1

f(a)ζ−abq ,

where ζq = e2πi/q. This can be inverted using the identity

f(n) =

q∑
b=1

f̂(b)ζbnq .

Thus, the condition for convergence of L(1, f), i.e.
∑q

a=1 f(a) = 0, can be

interpreted as f̂(q) = 0.
A q-periodic arithmetical function is said to be of Dirichlet type if

f(n) = 0 whenever (n, q) > 1.

Another important notion is that of linear independence of arithmetical
functions. A set {f1, . . . , fm} of arithmetical functions is said to be linearly
independent over Q if

m∑
j=1

αjfj = 0 with αj ∈ Q ⇒ αj = 0 for all 1 ≤ j ≤ m.

Again, using the theory of the Hurwitz zeta function, one can derive (as
we will see below) formulas for L′(1, f) in terms of the Stieltjes constants.

We can now state the main theorems of this paper.

Theorem 1.1. Let p be a prime greater than 7. Define

Fp := {f : Z→ Q | f is p-periodic and odd, f̂(p) = 0, L(1, f) 6= 0}.
For r > 2, let f1, . . . , fr be Q-linearly independent elements of Fp. Then
Conjecture 1 implies that at most three of the numbers{

L′(1, fj) = −
p∑
a=1

fj(a)γ1(a, p)
∣∣∣ 1 ≤ j ≤ r

}
are algebraic.

We also handle the case of p-periodic arithmetical functions satisfying
L(1, f) = 0:

Theorem 1.2. Let p be a prime number greater than 5. Define

Gp := {f : Z→ Q | f is p-periodic and odd, f̂(p) = 0, L(1, f) = 0}.
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For r ≥ 2, let f1, . . . , fr be Q-linearly independent elements of Gp. Then
under Conjecture 1, at most one of the numbers{

L′(1, fj) = −
p∑
a=1

fj(a)γ1(a, p)
∣∣∣ 1 ≤ j ≤ r

}
is algebraic.

Remark. Both the above theorems also hold when the period of the
functions under consideration is a composite number q, provided that the
Fourier transforms of the functions are of Dirichlet type. This restriction
comes from the nature of Conjecture 1. Indeed, we will prove that Theo-
rem 1.1 holds for the general set of functions

Fq := {f : Z→ Q | f is q-periodic and odd,

f̂ is of Dirichlet type, L(1, f) 6= 0},
and Theorem 1.2 holds for

Gq := {f : Z→ Q | f is q-periodic and odd,

f̂ is of Dirichlet type, L(1, f) = 0},
where q is not necessarily prime.

We note that the above defined set Fq is non-empty since odd primitive
Dirichlet characters modulo q are in Fq. We will see this in the course of
proof of the following corollary.

Corollary 1. Let q be a natural number greater than 7. Then under
Conjecture 1, at most three of the following numbers are algebraic:{

L′(1, χ) = −
q∑

a=1

χ(a)γ1(a, q)
∣∣∣ χ is an odd primitive

Dirichlet character modulo q
}
.

Applying Theorem 1.1 to the scenario when q = p, an odd prime greater
than 7, and

fj(n) :=


1 if n ≡ j mod p,

−1 if n ≡ −j mod p,

0 otherwise,

for 1 ≤ j ≤ (p− 1)/2, we infer the following:

Corollary 2. For an odd prime p greater than 7, Conjecture 1 implies
that at least (p− 7)/2 of the numbers

{γ1(a, p) | 1 ≤ a ≤ p− 1}
are transcendental.
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2. Preliminaries. The aim of this section is to introduce notation and
some fundamental results that will be used later. Let q be a fixed positive
integer. Let f : N→ Q be q-periodic. Define

L(s, f) =

∞∑
n=1

f(n)

ns
.

Observe that L(s, f) converges absolutely for <(s) > 1. Since f is periodic,

L(s, f) =

q∑
a=1

f(a)

∞∑
k=0

1

(a+ kq)s
=

1

qs

q∑
a=1

f(a)ζ(s, a/q),(2)

where ζ(s, x) is the Hurwitz zeta function. For <(s) > 1 and 0 < x ≤ 1, the
Hurwitz zeta function is defined as

ζ(s, x) =
∞∑
n=0

1

(n+ x)s
.

In 1882, Hurwitz [1, Chapter 12, Section 5] proved that ζ(s, x) has an an-
alytic continuation to the entire complex plane except for a simple pole
at s = 1 with residue 1. Using this, we conclude that L(s, f) can be ex-
tended analytically to C except for a simple pole at s = 1 with residue
1
q

∑q
a=1 f(a). Thus, it is easy to deduce that

∑∞
n=1

f(n)
n converges when-

ever
∑q

a=1 f(a) = 0. Hence, f(q) = f̂(q) = 0 implies that both L(s, f) and

L(s, f̂) are entire.
Before proceeding, we prove a few lemmas for q-periodic arithmetical

functions.

Lemma 2.1. Let f be a q-periodic arithmetical function. Then

L(1− s, f) = 2Γ (s)

(
q

2π

)s
cos

(
sπ

2

)
L(s, f̂)

when f is even (i.e., f(q − n) = f(n) for all n), and

L(1− s, f) = 2iΓ (s)

(
q

2π

)s
sin

(
sπ

2

)
L(s, f̂)

when f is odd (i.e., f(q − n) = −f(n) for all n).

Proof. We refer the reader to [11, Chapter XIV, Theorem 2.1].

In analogy with the notation of generalized Bernoulli numbers associated
to Dirichlet characters, we define

B1,f :=

q∑
a=1

af(a),

where f is an odd q-periodic arithmetical function. We make another im-
portant observation.
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Lemma 2.2. For any q-periodic arithmetical function f ,

L′(0, f) =
log q

q
B1,f +

q∑
b=1

f(b) logΓ

(
b

q

)
.

Proof. By differentiating (2) with respect to s, we have

L′(s, f) =
− log q

qs

[ q∑
a=1

f(a) ζ

(
s,
a

q

)]
+

[
1

qs

q∑
a=1

f(a)ζ ′
(
s,
a

q

)]
.

Substituting s = 0, we have

L′(0, f) = − log q

[ q∑
a=1

f(a) ζ

(
0,
a

q

)]
+

[ q∑
a=1

f(a)ζ ′
(

0,
a

q

)]
.

The values of the Hurwitz zeta function and its derivative at s = 0 are given
by

ζ(0, x) = 1 + ζ(0)− x, ζ ′(0, x) = logΓ (x) + ζ ′(0),

where ζ(s) is the Riemann zeta function (for the proof see [6]). Substituting
these values in the expression obtained earlier, we get

L′(0, f) = −(log q)(1 + ζ(0))
[ q∑
a=1

f(a)
]

+
log q

q

q∑
a=1

f(a)a

+ ζ ′(0)
[ q∑
a=1

f(a)
]

+

q∑
a=1

f(a) logΓ

(
a

q

)

=
log q

q

q∑
a=1

f(a)a+

q∑
a=1

f(a) logΓ

(
a

q

)
,

since
∑q

a=1 f(a) = 0.

The functional equation obtained in Lemma 2.1 gives an expression for
L′(1, f) when f is an odd periodic function.

Lemma 2.3. Let f be an odd q-periodic arithmetical function satisfying
f(q) = f̂(q) = 0. Then

L′(1, f) =
iπ

q

{((
1 +

1

q

)
log q − log 2π − γ

)
B1,f̂ +

q∑
b=1

f̂(b) logΓ

(
b

q

)}
,

where B1,g :=
∑q

a=1 ag(a) for any odd q-periodic arithmetical function g.

Proof. Note that if f is an odd periodic arithmetical function, then so
is f̂ . Thus, differentiating the functional equation for L(s, f̂) from Lemma 2.1
gives
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−L′(1− s, f̂) = 2Γ ′(s)

(
q

2π

)s
sin

(
sπ

2

)
L(s, f)

+ 2Γ (s)

(
q

2π

)s
log

(
q

2π

)
sin

(
sπ

2

)
L(s, f)

+ 2Γ (s)

(
q

2π

)sπ
2

cos

(
sπ

2

)
L(s, f)

+ 2Γ (s)

(
q

2π

)s
sin

(
sπ

2

)
L′(s, f).

Since f(q) = f̂(q) = 0, both L(s, f) and L(s, f̂) are entire. Taking the limit
as s tends to 1 in the above expression, we obtain

−L′(0, f̂) = 2iΓ (1)
q

2π
sin

(
π

2

){(
Γ ′

Γ
(1) + log

(
q

2π

))
L(1, f) + L′(1, f)

}
=
iq

π

{
L′(1, f) + L(1, f)

(
log

(
q

2π

)
− γ
)}

,

as Γ ′(1)/Γ (1) = −γ. By rearrangement, we get

L′(1, f) =
iπ

q
L′(0, f̂)−

(
log

(
q

2π

)
− γ
)
L(1, f).

The value L(1, f) for periodic arithmetical functions is well-understood (for
example, see [4, Theorem 3.1]). In particular, when f is odd,

(3) L(1, f) =
−iπ
q

q∑
a=1

f̂(a)a =
−iπ
q
B1,f̂ .

This evaluation, together with Lemma 2.2, gives

L′(1, f) =
iπ

q

{
log q

q
B1,f̂ +

q∑
b=1

f̂(b) logΓ

(
b

q

)
+

(
log

(
q

2π

)
− γ
)
B1,f̂

}
,

=
iπ

q

{(
log q

q
+ log q − log 2π − γ

)
B1,f̂ +

q∑
b=1

f̂(b) logΓ

(
b

q

)}
,

from which the assertion is immediate.

A useful connection between values of derivatives of L-functions, at-
tached to periodic functions at s = 1, and generalized Stieltjes constants is
given in the following lemma. We include its proof for completeness (see [10,
Proposition 3.2]).

Lemma 2.4. For a q-periodic arithmetical function f with f̂(q) = 0,

L(k)(1, f) = (−1)k
q∑

a=1

f(a)γk(a, q),

where γk(a, q) are the generalized Stieltjes constants as defined earlier.
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Proof. For brevity, let

Hk(x, a, q) :=
∑
n≤x

n≡amod q

logk n

n

for any positive real number x. Observe that∑
n≤x

f(n)
logk n

n
=

q∑
a=1

f(a)Hk(x, a, q) =

q∑
a=1

f(a)

(
Hk(x, a, q)−

logk+1 x

q(k + 1)

)
,

since qf̂(q) =
∑q

a=1 f(a) = 0. Letting x→∞ gives the result.

As mentioned earlier, the special value L(1, f) has been extensively stud-
ied and is important in the context of our theorems. The following result of
Baker, Birch and Wirsing [2] will be particularly useful.

Theorem 2.5. If f is a non-vanishing function defined on the integers
with algebraic values and period q such that (i) f(n) = 0 whenever 1 <
(n, q) < q, and (ii) the qth cyclotomic polynomial Φq is irreducible over
Q(f(1), . . . , f(q)), then

∞∑
n=1

f(n)

n
6= 0.

We also observe that if f1, . . . , fr are q-periodic arithmetical functions
periodic with period q, then

(4)
r∑
j=1

αjfj = 0 ⇔
r∑
j=1

αj f̂j = 0,

for any complex numbers αj , 1 ≤ j ≤ r. This is immediate from the fact
that the Fourier transform is a linear automorphism of the C-vector space
of q-periodic arithmetical functions.

3. Proofs

3.1. Proof of Theorem 1.1. For convenience, let

C :=

(
1 +

1

q

)
log q − log 2π − γ.

Thus, Lemma 2.3 gives

L′(1, fj) =
iπ

q

{
CB1,f̂j

+

q∑
b=1

f̂j(b) logΓ

(
b

q

)}
for all 1 ≤ j ≤ r. By (3), the hypothesis L(1, fj) 6= 0 implies that B1,f̂j

6= 0.

For 1 ≤ k < l ≤ r, define

dk,l := B1,f̂l
L′(1, fk)−B1,f̂k

L′(1, fl).
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We claim that dk,l 6= 0. Indeed, if dk,l = 0, then

0 = B1,f̂l
L′(1, fk)−B1,f̂k

L′(1, fl)

=
iπ

q

{
C (B1,f̂l

B1,f̂k
−B1,f̂k

B1,f̂l
)+

q∑
b=1

[B1,f̂l
f̂k(b)−B1,f̂K

f̂l(b)] logΓ

(
b

q

)}

=

q∑
b=1

[B1,f̂l
f̂k(b)−B1,f̂K

f̂l(b)] logΓ

(
b

q

)
,

which is a Q-linear relation among values of the log gamma function as
B1,f̂j

∈ Q for all 1 ≤ j ≤ r. Therefore, Conjecture 1 gives

B1,f̂l
f̂k −B1,f̂k

f̂l = 0

on all natural numbers. This implies Q-linear dependence of f̂k and f̂l, and
thus contradicts the Q-linear independence of fk and fl by (4). Hence, dk,l
is not zero.

We now consider the ratio dk,l/du,v for 1 ≤ k, u < l, v ≤ r and (k, l) 6=
(u, v). If this ratio is algebraic, i.e.,

dk,l
du,v

= η ∈ Q,

then

0 = dk,l − ηdu,v

=

q∑
b=1

[B1,f̂l
f̂k(b)−B1,f̂k

f̂l(b)− ηB1,f̂w
f̂u(b) + ηB1,f̂u

f̂w(b)] logΓ

(
b

q

)
,

which is a Q-linear relation among log gamma values. Hence, by Conjec-
ture 1, we have

B1,f̂l
f̂k −B1,f̂k

f̂l − ηB1,f̂w
f̂u + ηB1,f̂u

f̂w = 0

on all natural numbers. Since B1,f̂j
are non-zero algebraic numbers, we ob-

tain a non-trivial Q-linear relation among f̂k, f̂l, f̂u and f̂w. Then (4) trans-
ports this to Q-linear dependence of fk, fl, fu and fw, which contradicts our
hypothesis. Thus, at most one of the dk,l’s can be algebraic for 1 ≤ k < l ≤ r.

As a result, if four numbers, L′(1, fk), L
′(1, fl), L

′(1, fu) and L′(1, fw),
were algebraic for (k, l) 6= (u,w), then dk,l/du,w would be algebraic, leading
to a contradiction.

3.2. Proof of Theorem 1.2. Using the hypothesis that L(1, f) = 0
for all f ∈ Gq and (3), we find that

B1,f̂j
= 0
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for all 1 ≤ j ≤ r. Hence, Lemma 2.3 gives

L′(1, fj) =
iπ

q

{ q∑
b=1

f̂j(b) logΓ

(
b

q

)}
for all 1 ≤ j ≤ r. Suppose that for 1 ≤ k < l ≤ r,

L′(1, fk)

L′(1, fl)
= ξ ∈ Q.

Then simplifying the above expression gives
q∑
b=1

[f̂k(b)− ξf̂l(b)] logΓ

(
b

q

)
= 0,

which is an algebraic linear relation among log gamma values. Therefore, by
Conjecture 1,

f̂k − ξf̂l = 0

on all natural numbers. This implies the Q-linear dependence of the func-
tions f̂k and f̂l, and thus contradicts the Q-linear independence of fk and fl
by (4). Hence, L′(1, fk)/L

′(1, fl) is transcendental for all 1 ≤ k < l ≤ r,
which implies that at most one of the numbers under consideration is alge-
braic.

3.3. Proof of Corollary 1. Let q be any natural number greater than 7
and let χ be an odd primitive Dirichlet character modulo q. It suffices to
show that χ ∈ Fq, i.e., χ̂ is of Dirichlet type and L(1, χ) 6= 0. The latter
follows from the famous theorem of Dirichlet [1, Theorem 6.20 and Section
7.3], while the former comes from [1, Chapter 8, Theorem 8.19] since

χ̂(n) =
1

q

q∑
a=1

χ(a)ζ−anq .

3.4. Proof of Corollary 2. We begin by observing that the functions
fj defined below are in Fp. For 1 ≤ j ≤ (p− 1)/2,

fj(n) :=


1 if n ≡ j mod p,

−1 if n ≡ −j mod p,

0 otherwise.

Clearly, each fj is periodic with odd prime period p, fj is odd and fj(p) = 0.
Moreover,

∑p
a=1 fj(a) = 0 and by Theorem 2.5, L(1, fj) 6= 0 for all 1 ≤ j ≤ r.

Thus, fj ∈ Fp for all 1 ≤ j ≤ r. Also note that the functions {fj | 1 ≤ j ≤
(p− 1)/2} are Q-linearly independent. Therefore, Theorem 1.1 implies that
at least (p− 1)/2− 3 of the numbers{

γ1(a, p)− γ1(p− a, p) | 1 ≤ a ≤ (p− 1)/2
}
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are transcendental. Since the difference of two numbers being transcen-
dental implies that at least one of them is transcendental, the result fol-
lows.

4. Concluding remarks. Our work here represents a modest begin-
ning of research into the arithmetic nature of generalized Stieltjes constants.
These constants have emerged in other contexts. Most notably, they appear
in Li’s criterion for the Riemann hypothesis (see for example [5]). It is quite
possible that the study of these constants can lead us to the holy grail of
mathematics.

Acknowledgments. We thank the referee and P. Rath for valuable
comments on an earlier version of this paper.
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Abstract (will appear on the journal’s web site only)

The connection between derivatives of L(s, f) for periodic arithmetical
functions f at s = 1 and generalized Stieltjes constants has been noted
earlier. In this paper, we utilize this link to throw light on the arithmetic
nature of L′(1, f) and certain Stieltjes constants. In particular, if p is an odd
prime greater than 7, then we deduce the transcendence of at least (p−7)/2
of the generalized Stieltjes constants, {γ1(a, p) : 1 ≤ a < p}, conditional on
a conjecture of S. Gun, M. Ram Murty and P. Rath (2009).
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